Объем кэш памяти последнего уровня. Кэш процессора на что влияет. Когда полезен большой объем кэша

Что такое кэш процессора?

Кэш – это часть памяти, которая обеспечивает максимальную скорость доступа и ускоряет скорость вычисления. Он хранит в себе части данных, которые процессор запрашивает наиболее часто, так что процессору нет необходимости постоянно за ними обращаться к памяти системы.

Как вы знаете, – это часть оборудования компьютера, которая характеризуется наиболее медленными скоростями обмена данными. Если процессору понадобится какая-то информация, он отправляется за ней к оперативной памяти по одноимённой шине. Получив от процессора запрос, та начинает копаться в своих анналах в поисках нужных процессору данных. По получению ОЗУ пересылает их обратно в процессор по той же шине памяти. Такой круг для обмена данными всегда был длинноват. Потому производители и решили, что можно было бы позволить процессору хранить данные где-нибудь поблизости. Принцип работы кэша основан на простой идее.

Представьте, что память – это школьная библиотека. Ученик подходит к работнику за книжкой, та отправляется к полкам, ищет её, возвращается к студенту, должным образом оформляет и приступает к следующему ученику. В конце дня он повторяет ту же операцию, когда книги ей возвращают. Вот так работает процессор без кэша.

Зачем же нужен кэш процессору?

А теперь представьте, что библиотекарю надоело постоянно носиться туда-сюда с книгами, которые постоянно у неё требуют из года в год, изо дня в день. Он обзавёлся большой тумбой, где хранит наиболее часто запрашиваемые книги и учебники. Остальные, что положены, конечно, так и продолжают храниться на прежних полках. Но эти – всегда под рукой. Сколько же времени он сэкономил этой тумбой и себе, и остальным. Это и есть кэш.

Значит, кэш умеет сохранять только самые требуемые данные?

Да. Но он может большее. Например, уже сохраняя в себе часто требуемые данные, он способен оценить (с помощью процессора) ситуацию и затребовать информацию, которая вот-вот понадобиться. Так, клиент видео проката, затребовавший фильм «Крепкий орешек» с первой частью, скорее всего, попросит вторую. А вот она! Также и с кэшем процессора. Обращаясь к ОЗУ и сохраняя определённые данные, он извлекает и данные из соседних ячеек памяти. Такие куски данных получили название строка кэша.

Что такое двухуровневый кэш?

Современный процессор имеет два уровня. Соответственно, первый и второй. Обозначаются литерой L от английского Level. Первый – L1 – более быстрый, но по объёму невелик. Второй – L2 – чуть больше, но медленнее, но быстрее, нежели оперативная память. Кэш первого уровня делится на кэш инструкций и кэш данных. Кэш инструкций хранит в себе тех их набор, которые необходимы процессору для расчётов. Тогда как в кэше данных сохраняются величины или значения, необходимые для текущего вычисления. А кэш второго уровня используется для подгрузки данных из оперативной памяти компьютера. Принцип работы уровней кэша также можно объяснить с помощью примера школьной библиотеки. Так, заполнив купленную тумбу, библиотекарь понимает, что её уже не хватает на книги, ради которых постоянно приходится бегать по залу. Но список таких книг окончательно оформлен, и нужно купить такую же тумбу. Первую он выбрасывать не стал – жалко – и просто докупил вторую. И теперь, по мере заполняемости первой, библиотекарь начинает заполнять вторую, которая вступает в дело, когда первая заполнена, но нужные книги в неё не поместились. С уровнями кэша то же самое. И по мере развития микропроцессорной техники уровни кэша процессора растут в своих объёмах.

Кэш будет продолжать расти?

Вряд ли. Погоня за частотой процессора тоже продолжалась недолго, и производители нашли другие пути увеличения мощности. Также и с кэшем. Говоря конкретно, объём и количество уровней бесконечно раздувать нельзя. Кэш не должен превращаться в ещё одну планку оперативной памяти с медленной скоростью доступа к ней или превращать размеры процессора до уровня в половину материнской платы. Ведь скорость доступа к данным – это, прежде всего, энергопотребление и затрата производительности самого процессора. Также стали учащаться промахи кэша (в противоположность к попаданию кэша), когда процессор обращается к кэшированной памяти за данными, которых там не оказывается. Данные в кэше постоянно обновляются, используя различные алгоритмы, чтобы вероятность попадания кэша усилить.

Первым процессором, который производился с кэшем L2, стал Pentium Pro в 1995 году. У него было 256 или 512 кбайт кэша второго уровня на кристалле, что давало существенное преимущество над обычными процессорами Pentium, чей кэш располагался на материнской плате. С появлением Pentium II в модуле Slot 1 выделенная кэш-память "поселилась" рядом с процессором. Но только у второго поколения Pentium III для Socket 370 кэш-память перешла на кристалл процессора. Так продолжается и по сей день, но есть процессоры с небольшим количеством кэша, а есть с большим. Стоит ли тратить деньги на модель с большим кэшем? В прошлом дополнительная кэш-память не всегда ощутимо влияла на производительность.

Хотя всегда можно найти измеряемые различия между двумя процессорами с разными размерами кэша, для экономии средств вполне можно было покупать процессоры с меньшим кэшем. Но ни один процессор до появления Core 2 Duo не был доступен с тремя разными вариантами кэша.

Pentium 4 в своём первом поколении (Willamette, 180 нм) оснащался 256 кбайт кэша, а в более успешном втором поколении (Northwood, 130 нм) - уже 512 кбайт кэша. В то время дешёвые процессоры Celeron с меньшим кэшем производились на тех же вычислительных ядрах. Celeron относятся к первому поколению продуктов с одной технологической базой для high-end и дешёвых моделей, различающихся только доступным размером кэша и частотами FSB/ядра. Позднее была добавлена и разница в функциях, чтобы заметнее разделить сегменты рынка.

С выпуском 90-нм ядра Prescott объём кэша L2 вырос до 1 Мбайт, и этот процессор стал основой линейки настольных процессоров Intel до появления 2-Мбайт 65-нм Cedar Mill. Intel даже использовала два таких ядра для создания процессоров Pentium D 900 второго поколения. Впрочем, более быстрые тактовые частоты и больший объём кэша даже тогда не значили очень много. Сегодня ситуация изменилась: лучшая производительность Core 2 Duo (Conroe, 65 нм) и меньшее энергопотребление немало обязаны размеру кэша.

AMD весьма сдержанно относилась к увеличению объёма кэша. Скорее всего, это связано с площадью кристалла (бюджетом транзисторов), поскольку количество 65-нм процессоров не может удовлетворить спрос на рынке, а у менее выгодных 90-нм моделей этот вопрос стоит ещё острее. У Intel, с другой стороны, есть преимущество в виде производства всех массовых процессоров по 65-нм техпроцессу, да и ёмкость кэша L2 будет ещё расти. Например, следующее поколение Core 2 на 45-нм ядре Penryn будет оснащаться до 6 Мбайт кэша L2. Можно ли рассматривать это как маркетинговый шаг, или увеличение ёмкости L2 действительно даст прирост производительности? Давайте посмотрим.

Большой кэш L2: маркетинг или рост производительности?

Кэши процессора играют вполне определённую роль: они уменьшают количество обращений к памяти, буферизуя часто используемые данные. Сегодня ёмкость ОЗУ составляет от 512 Мбайт до 4 Гбайт, а объём кэша - от 256 кбайт до 8 Мбайт, в зависимости от модели. Впрочем, даже небольшого объёма кэша в 256 или 512 кбайт достаточно, чтобы обеспечить высокую производительность, которую сегодня воспринимают само собой разумеющейся.

Есть разные способы организации иерархии кэша. В большинстве современных компьютеров установлены процессоры с небольшим кэшем первого уровня (L1, до 128 кбайт), который обычно разделяется на кэш данных и кэш инструкций. Кэш L2 большего размера обычно используется для хранения данных, он является общим для двух процессорных ядер Core 2 Duo, хотя Athlon 64 X2 или Pentium D имеют раздельные кэши на ядро. Кэш L2 может работать эксклюзивно или инклюзивно, то есть он может либо хранить копию содержимого кэша L1, либо нет. AMD вскоре представит процессоры с третьим уровнем кэша, который будет общим для четырёх ядер в процессорах AMD Phenom. То же самое ожидается и для архитектуры Nehalem, которую Intel представит в 2008 году на замену текущим Core 2.

Кэш L1 всегда был в составе процессора, но поначалу кэш L2 устанавливался на материнские платы, как было в случае многих компьютеров 486DX и Pentium. Для кэш-памяти первого уровня использовались простые чипы статической памяти (SRAM, Static RAM). Они вскоре были заменены конвейерным пакетным кэшем (pipelined burst cache) у процессоров Pentium, пока не появилась возможность устанавливать кэш на кристалл. Pentium Pro на 150 - 200 МГц стал первым процессором, содержащим 256 кбайт кэш-памяти L2 на кристалле, побив рекорд по размеру керамической упаковки для настольных ПК и рабочих станций. Pentium III для Socket 370, работающий на частотах от 500 МГц до 1,13 ГГц, стал первым процессором с 256 кбайт кэш-памяти на кристалле L2, что давало преимущество по снижению задержек, поскольку кэш работает на частоте CPU.

Встроенный кэш L2 дал существенный прирост производительности практически в любых приложениях. Увеличение производительности оказалось столь существенным, что появление интегрированного кэша L2 можно назвать самым важным фактором производительности у процессоров x86. Отключение кэша L2 снизит производительность сильнее, чем отключение второго ядра у двуядерного процессора.

Однако кэш-память влияет не только на производительность. Она стала мощным инструментом, позволяющим создавать разные модели процессоров для low-end, массового и high-end сегментов, поскольку производитель может гибко отбирать процессоры по отбраковке и тактовым частотам. Если на кристалле нет дефектов, то можно включить весь кэш L2, да и частоты получаются высокие. Если же желаемых тактовых частот достичь не удастся, то кристалл может стать моделью начального уровня в high-end линейке, например, Core 2 Duo 6000 с 4 Мбайт кэша и низкими частотами. Если дефекты присутствуют в кэше L2, то производитель имеет возможность отключить его часть и создать модель начального уровня с меньшим объёмом кэша, например, Core 2 Duo E4000 с 2 Мбайт кэша L2 или даже Pentium Dual Core всего с 1 Мбайт кэша. Всё это действительно так, но вопрос заключается в следующем: насколько различие в объёме кэша влияет на производительность?

Варианты Core 2 Duo

Intel выпустила на рынок большой ассортимент настольных процессоров. Сегодня ещё можно найти Pentium 4 и Pentium D, но большинство моделей построено на микро-архитектуре Core. Мы не рекомендуем брать процессоры Pentium 4 или Pentium D, хотя их тактовые частоты до 3,8 ГГц могут выглядеть привлекательно. Но любой процессор Core 2 на частоте 2,2 ГГц и выше способен победить даже самые быстрые модели Pentium D (собственно, как и Athlon 64 X2), поскольку Core 2 даёт намного лучшую производительность на такт .

Благодаря меньшим тактовым частотам процессоры Core 2 более эффективны по энергопотреблению. Если топовые модели Pentium D 800 "съедают" до 130 Вт, то лишь Core 2 Extreme с четырьмя ядрами преодолевает порог 100 Вт. Все двуядерные процессоры потребляют не больше 65 Вт. Кроме того, энергопотребление в режиме бездействия процессоров Core 2 Duo ещё ниже, поскольку рабочая частота в режиме бездействия меньше (максимум 1,2 ГГц для Core 2 Duo/Quad против 2,8 ГГц для Pentium D/4). На снижение энергопотребления повлиял улучшенный дизайн транзисторов с уменьшенными токами утечки.

Сегодня доступны модели E и X. Модели E предназначены для массового рынка, а X относятся к классу Extreme Edition. Q обозначает четыре ядра, которые Intel создаёт, размещая два двуядерных кристалла в одной физической упаковке. Процессоры E6000 оснащены 4 Мбайт кэша L2, если их модельный номер выше E6400 или заканчивается на 20 (например, E6320). Модели, заканчивающиеся на 00 (например, E6600) работают с FSB 266 МГц (FSB1066), а модели, заканчивающиеся на 50 (E6750), работают с FSB 333 МГц (FSB1333). Последняя требует чипсета P35 или X38 и даёт чуть более высокую производительность. E4000 работает с FSB 200 МГц (FSB800) и имеет всего 2 Мбайт кэша L2. Версии с 1 Мбайт кэша продаются как Pentium Dual Core E2140, E2160 и E2180 с частотами от 1,6 до 2,0 ГГц. Кроме названия и некоторых функций, которые Intel отключает у дешёвых процессоров, упомянутые модели Pentium Dual Cores идентичны Core 2 Duo.

Характеристики процессоровCore 2 Duo
Номер 65-нм процессора Кэш Тактовая частота FSB Технология виртуализации Технология Trusted Execution
E6850 4 Мбайт L2 3 ГГц 333 МГц X X
E6750 4 Мбайт L2 2,66 ГГц 333 МГц X X
E6700 4 Мбайт L2 2,66 ГГц 266 МГц X
E6600 4 Мбайт L2 2,40 ГГц 266 МГц X
E6550 4 Мбайт L2 2,33 ГГц 333 МГц X X
E6540 4 Мбайт L2 2,33 ГГц 333 МГц X
E6420 4 Мбайт L2 2,13 ГГц 266 МГц X
E6400 2 Мбайт L2 2,13 ГГц 266 МГц X
E6320 4 Мбайт L2 1,86 ГГц 266 МГц X
E6300 2 Мбайт L2 1,86 ГГц 266 МГц X
E4600 2 Мбайт L2 2,40 ГГц 200 МГц
E4500 2 Мбайт L2 2,20 ГГц 200 МГц
E4400 2 Мбайт L2 2 ГГц 200 МГц
E4300 2 Мбайт L2 1,80 ГГц 200 МГц


Платформа
CPU I Intel Pentium Dual Core E2160 (65 нм; 1 800 МГц, 1 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
CPU II Intel Core 2 Duo E4400 (65 нм; 2 000 МГц, 2 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
CPU III Intel Core 2 Duo X6800 (65 нм; 3 000 МГц, 4 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
Материнская плата ASUS Blitz Formula, Rev: 1.0
Чипсет: Intel P35, BIOS 1101
Память Corsair CM2X1024-888C4D, 2x 1024 Мбайт DDR2-800 (CL 4-4-4-12 2T)
Жёсткий диск Western Digital Raptor WD1500ADFD, 150 Гбайт, 10 000 об/мин, кэш 16 Мбайт, SATA/150
DVD-ROM Samsung SH-S183
Видеокарта Zotac GeForce 8800 GTS, GPU: GeForce 8800 GTS (500 МГц), память: 320 Мбайт GDDR3 (1 600 Мгц)
Звуковая карта Встроенная
Блок питания Enermax EG565P-VE, ATX 2.01, 510 Вт
Системное ПО и драйверы
ОС Windows XP Professional 5.10.2600, Service Pack 2
Версия DirectX 9.0c (4.09.0000.0904)
Драйверы платформы Intel Version 8.3.1013
Графический драйвер nVidia Forceware 162.18

Тесты и настройки

3D-игры
Call Of Duty 2 Version: 1.3 Retail
Video Mode: 1280x960
Anti Aliasing: off
Graphics Card: medium
Timedemo demo2
Prey Version: 1.3
Video Mode: 1280x1024
Video Quality: game default
Vsync = off
Benchmark: THG-Demo
Quake 4 Version: 1.2 (Dual-Core Patch)
Video Mode: 1280x1024
Video Quality: high
THG Timedemo waste.map
timedemo demo8.demo 1 (1 = load textures)
Аудио
Lame MP3 Version 3.98 Beta 5
Audio CD "Terminator II SE", 53 min
wave to mp3
160 kbps
Видео
TMPEG 3.0 Express Version: 3.0.4.24 (no Audio)
fist 5 Minutes DVD Terminator 2 SE (704x576) 16:9
Multithreading by rendering
DivX 6.7 Version: 6.6 (4 Logical CPUs)
Profile: High Definition Profile
1-pass, 3000 kbit/s
Encoding mode: Insane Quality
Enhanced multithreading
no Audio
XviD 1.1.3 Version: 1.1.3
Target quantizer: 1.00
Mainconcept H.264 v2 Version 2.1
260 MB MPEG-2 source (1920x1080) 16:9
Codec: H.264
Mode: NTSC
Audio: AAC
Profile: High
Stream: Program
Приложения
WinRAR Version 3.70
(303 MB, 47 Files, 2 Folders)
Compression = Best
Dictionary = 4096 kB
Autodesk 3D Studio Max Version: 8.0
Characters "Dragon_Charater_rig"
rendering HTDV 1920x1080
Cinebench Version: R10
1 CPU, x CPU run
PCMark05 Pro Version: 1.2.0
CPU and Memory Tests
Windows Media Player 10.00.00.3646
Windows Media Encoder 9.00.00.2980




Заключение

Если объём кэш-памяти ограниченно влияет на такие синтетические тесты, как PCMark05, то разница в производительности большинства реальных приложений оказалась весьма существенной. Поначалу это кажется удивительным, поскольку опыт говорит, что именно синтетические тесты дают самую ощутимую разницу в производительности, которая мало отражается на реальных приложениях.

Ответ прост: размер кэша очень важен для современных процессоров с микро-архитектурой Core 2 Duo. Мы использовали 4-Мбайт Core 2 Extreme X6800, 2-Мбайт Core 2 Duo E4400 и Pentium Dual Core E2160, который является процессором Core 2 Duo с кэшем L2 всего 1 Мбайт. Все процессоры работали на одинаковой системной шине 266 МГц и с множителем 9x, чтобы частота составила 2 400 МГц. Единственная разница заключается в размере кэша, поскольку все современные двуядерные процессоры, за исключением старого Pentium D, производятся из одинаковых кристаллов. Чем станет ядро, Core 2 Extreme Edition или Pentium Dual Core, определяется выходом годных кристаллов (дефектами) или спросом рынка.

Если вы сравните результаты 3D-шутеров Prey и Quake 4, являющих типичными игровыми приложениями, разница в производительности между 1 и 4 Мбайт составляет примерно один шаг по частоте. То же самое касается тестов кодирования видео для кодеков DivX 6.6 и XviD 1.1.2, а также архиватора WinRAR 3.7. Однако, такие интенсивно нагружающие CPU приложения, как 3DStudio Max 8, Lame MP3 Encoder или H.264 Encoder V2 от MainConcept не слишком сильно выигрывают от увеличения размера кэша.

Впрочем, подход Intel, а именно, использование всего доступного бюджета транзисторов, который увеличился при переходе с 65-нм техпроцесса на 45-нм, имеет для микро-архитектуры Core 2 Duo определённую значимость. Кэш L2 у этих процессоров работает очень эффективно, особенно, если учесть, что он общий для двух ядер. Поэтому кэш нивелирует влияние разных частот памяти и предотвращает "узкое место" в виде FSB. И делает он это замечательно, поскольку тесты наглядно показывают, что производительность процессора с одним мегабайтом кэш-памяти невысокая.

С этой точки зрения увеличение размера кэша L2 с 4 Мбайт до, максимум, 6 Мбайт у грядущих 45-нм двуядерных процессоров Penryn (линейка Core 2 Duo E8000) имеет смысл. Уменьшение техпроцесса с 65 до 45 нм позволяет Intel увеличить бюджет транзисторов, и благодаря увеличению объёма кэша мы вновь получим рост производительности. Впрочем, Intel получит выгоду из-за разных вариантов процессоров с 6, 4, 2 или даже 1 Мбайт кэша L2. Благодаря нескольким вариантам Intel может использовать большее число кристаллов с пластины, несмотря на наличие случайных дефектов, которые в противном случае приводили бы к попаданию кристалла в мусорную корзину. Большой размер кэша, как видим, важен не только для производительности, но и для прибыли Intel.

Почти все разработчики знают, что кэш процессора - это такая маленькая, но быстрая память, в которой хранятся данные из недавно посещённых областей памяти - определение краткое и довольно точное. Тем не менее, знание «скучных» подробностей относительно механизмов работы кэша необходимо для понимания факторов влияющих на производительность кода.

В этой статье мы рассмотрим ряд примеров иллюстрирующих различные особенности работы кэшей и их влияние на производительность. Примеры будут на C#, выбор языка и платформы не так сильно влияет на оценку производительности и конечные выводы. Естественно, в разумных пределах, если вы выберите язык, в котором чтение значения из массива равносильно обращению к хеш-таблице, никаких результатов пригодных к интерпретации вы не получите. Курсивом идут примечания переводчика.

Habracut - - -

Пример 1: доступ к памяти и производительность

Как вы думаете, насколько второй цикл быстрее первого?
int arr = new int ;

// первый
for (int i = 0; i < arr.Length; i++) arr[i] *= 3;

// второй
for (int i = 0; i < arr.Length; i += 16) arr[i] *= 3;


Первый цикл умножает все значения массива на 3, второй цикл только каждое шестнадцатое значение. Второй цикл совершает только 6% работы первого цикла, но на современных машинах оба цикла выполняются примерно за равное время: 80 мс и 78 мс соответственно (на моей машине).

Разгадка проста - доступ к памяти. Скорость работы этих циклов в первую очередь определяется скоростью работы подсистемы памяти, а не скоростью целочисленного умножения. Как мы увидим в следующем примере, количество обращений к оперативной памяти одинаково и в первом и во втором случае.

Пример 2: влияние строк кэша

Копнём глубже - попробуем другие значения шага, не только 1 и 16:
for (int i = 0; i < arr.Length; i += K /* шаг */ ) arr[i] *= 3;

Вот время работы этого цикла для различных значений шага K:

Обратите внимание, при значениях шага от 1 до 16 время работы практически не изменяется. Но при значениях больше 16, время работы уменьшается примерно вдвое каждый раз когда мы увеличиваем шаг в два раза. Это не означает, что цикл каким-то магическим образом начинает работать быстрее, просто количество итераций при этом так же уменьшается. Ключевой момент - одинаковое время работы при значениях шага от 1 до 16.

Причина этого в том, что современные процессоры осуществляют доступ к памяти не побайтно, а небольшими блоками, которые называют строками кэша. Обычно размер строки составляет 64 байта. Когда вы читаете какое-либо значение из памяти, в кэш попадает как минимум одна строка кэша. Последующий доступ к какому-либо значению из этой строки происходит очень быстро.

Из-за того, что 16 значений типа int занимают 64 байта, циклы с шагами от 1 до 16 обращаются к одинаковому количеству строк кэша, точнее говоря, ко всем строкам кэша массива. При шаге 32, обращение происходит к каждой второй строке, при шаге 64, к каждой четвёртой.

Понимание этого очень важно для некоторых способов оптимизации. От места расположения данных в памяти зависит число обращений к ней. Например, из-за невыровненных данных может потребоваться два обращения к оперативной памяти, вместо одного. Как мы выяснили выше, скорость работы при этом будет в два раза ниже.

Пример 3: размеры кэшей первого и второго уровня (L1 и L2)

Современные процессоры, как правило, имеют два или три уровня кэшей, обычно их называют L1, L2 и L3. Для того, чтобы узнать размеры кэшей различных уровней, можно воспользоваться утилитой CoreInfo или функцией Windows API GetLogicalProcessorInfo . Оба способа так же предоставляют информацию о размере строки кэша для каждого уровня.

На моей машине CoreInfo сообщает о кэшах данных L1 объёмом по 32 Кбайт, кэшах инструкций L1 объёмом по 32 Кбайт и кэшах данных L2 объёмом по 4 Мбайт. Каждое ядро имеет свои персональные кэши L1, кэши L2 общие для каждой пары ядер:

Logical Processor to Cache Map: *--- Data Cache 0, Level 1, 32 KB, Assoc 8, LineSize 64 *--- Instruction Cache 0, Level 1, 32 KB, Assoc 8, LineSize 64 -*-- Data Cache 1, Level 1, 32 KB, Assoc 8, LineSize 64 -*-- Instruction Cache 1, Level 1, 32 KB, Assoc 8, LineSize 64 **-- Unified Cache 0, Level 2, 4 MB, Assoc 16, LineSize 64 --*- Data Cache 2, Level 1, 32 KB, Assoc 8, LineSize 64 --*- Instruction Cache 2, Level 1, 32 KB, Assoc 8, LineSize 64 ---* Data Cache 3, Level 1, 32 KB, Assoc 8, LineSize 64 ---* Instruction Cache 3, Level 1, 32 KB, Assoc 8, LineSize 64 --** Unified Cache 1, Level 2, 4 MB, Assoc 16, LineSize 64
Проверим эту информацию экспериментально. Для этого, пройдёмся по нашему массиву инкрементируя каждое 16-ое значение - простой способ изменить данные в каждой строке кэша. При достижении конца, возвращаемся к началу. Проверим различные размеры массива, мы должны увидеть падение производительности когда массив перестаёт помещаться в кэши разных уровней.

Код такой:

int steps = 64 * 1024 * 1024; // количество итераций
int lengthMod = arr.Length - 1; // размер массива -- степень двойки

for (int i = 0; i < steps; i++)
{
// x & lengthMod = x % arr.Length, ибо степени двойки
arr[(i * 16) & lengthMod]++;
}


Результаты тестов:

На моей машине заметны падения производительности после 32 Кбайт и 4 Мбайт - это и есть размеры кэшей L1 и L2.

Пример 4: параллелизм инструкций

Теперь давайте взглянем на кое-что другое. По вашему мнению, какой из этих двух циклов выполнится быстрее?
int steps = 256 * 1024 * 1024;
int a = new int ;

// первый
for (int i = 0; i < steps; i++) { a++; a++; }

// второй
for (int i = 0; i < steps; i++) { a++; a++; }


Оказывается, второй цикл выполняется почти в два раза быстрее, по крайней мере, на всех протестированных мной машинах. Почему? Потому, что команды внутри циклов имеют разные зависимости по данным. Команды первого имеют следующую цепочку зависимостей:

Во втором цикле зависимости такие:

Функциональные части современных процессоров способны выполнять определённое число некоторых операций одновременно, как правило, не очень большое число. Например, возможен параллельный доступ к данным из кэша L1 по двум адресам, так же возможно одновременное выполнение двух простых арифметических команд. В первом цикле процессор не может задействовать эти возможности, но может во втором.

Пример 5: ассоциативность кэша

Один из ключевых вопросов, на который необходимо дать ответ при проектировании кэша - могут ли данные из определённой области памяти храниться в любых ячейках кэша или только в некоторых из них. Три возможных решения:
  1. Кэш прямого отображения , данные каждой строки кэша в оперативной памяти хранятся только в одной заранее определённой ячейке кэша. Простейший способ вычисления отображения: индекс_строки_в_памяти % количество_ячеек_кэша. Две строки, отображённые на одну и ту же ячейку, не могут находится в кэше одновременно.
  2. N-входовый частично-ассоциативный кэш , каждая строка может храниться в N различных ячейках кэша. Например, в 16-входовом кэше строка может храниться в одной из 16-ти ячеек составляющих группу. Обычно, строки с равными младшими битами индексов разделяют одну группу.
  3. Полностью ассоциативный кэш , любая строка может быть сохранена в любую ячейку кэша. Решение эквивалентно хеш-таблице по своему поведению.
Кэши прямого отображения подвержены конфликтам, например, когда две строки соревнуются за одну ячейку, поочерёдно вытесняя друг-друга из кэша, эффективность очень низка. С другой стороны, полностью ассоциативные кэши, хотя и лишены этого недостатка, очень сложны и дороги в реализации. Частично-ассоциативные кэши - типичный компромисс между сложностью реализации и эффективностью.

К примеру, на моей машине кэш L2 размером в 4 Мбайт является 16-входовым частично-ассоциативным кэшем. Вся оперативная память разделена на множества строк по младшим битам их индексов, строки из каждого множества соревнуются за одну группу из 16 ячеек кэша L2.

Так как кэш L2 имеет 65 536 ячеек (4 * 2 20 / 64) и каждая группа состоит из 16 ячеек, всего мы имеем 4 096 групп. Таким образом, младшие 12 битов индекса строки определяют к какой группе относится эта строка (2 12 = 4 096). В результате, строки с адресами кратными 262 144 (4 096 * 64) разделяют одну и ту же группу из 16-ти ячеек и соревнуются за место в ней.

Чтобы эффекты ассоциативности проявили себя, нам необходимо постоянно обращаться к большому количеству строк из одной группы, например, используя следующий код:

public static long UpdateEveryKthByte(byte arr, int K)
{
const int rep = 1024 * 1024; // количество итераций

Stopwatch sw = Stopwatch.StartNew();

int p = 0;
for (int i = 0; i < rep; i++)
{
arr[p]++;

P += K; if (p >= arr.Length) p = 0;
}

Sw.Stop();
return sw.ElapsedMilliseconds;
}


Метод инкрементирует каждый K-ый элемент массива. По достижении конца, начинаем заново. После довольно большого количества итераций (2 20), останавливаемся. Я сделал прогоны для различных размеров массива и значений шага K. Результаты (синий - большое время работы, белый - маленькое):

Синим областям соответствуют те случаи, когда при постоянном изменении данных кэш не в состоянии вместить все требуемые данные одновременно . Яркий синий цвет говорит о времени работы порядка 80 мс, почти белый - 10 мс.

Разберёмся с синими областями:

  1. Почему появляются вертикальные линии? Вертикальные линии соответствуют значениям шага при которых осуществляется доступ к слишком большому числу строк (больше 16-ти) из одной группы. Для таких значений, 16-входовый кэш моей машины не может вместить все необходимые данные.

    Некоторые из плохих значений шага - степени двойки: 256 и 512. Для примера рассмотрим шаг 512 и массив в 8 Мбайт. При этом шаге, в массиве имеются 32 участка (8 * 2 20 / 262 144), которые ведут борьбу друг с другом за ячейки в 512-ти группах кэша (262 144 / 512). Участка 32, а ячеек в кэше под каждую группу только 16, поэтому места на всех не хватает.

    Другие значения шага, не являющиеся степенями двойки, просто невезучие, что вызывает большое количество обращений к одинаковым группам кэша, а так же приводит к появлению вертикальных синих линий на рисунке. На этом месте любителям теории чисел предлагается задуматься.

  2. Почему вертикальные линии обрываются на границе в 4 Мбайт? При размере массива в 4 Мбайт или меньше, 16-входовый кэш ведёт себя так же как и полностью ассоциативный, то есть может вместить все данные массива без конфликтов. Имеется не более 16-ти областей ведущих борьбу за одну группу кэша (262 144 * 16 = 4 * 2 20 = 4 Мбайт).
  3. Почему слева вверху находится большой синий треугольник? Потому, что при маленьком шаге и большом массиве кэш не в состоянии уместить все необходимые данные. Степень ассоциативности кэша играет тут второстепенную роль, ограничение связано с размером кэша L2.

    Например, при размере массива в 16 Мбайт и шаге 128, мы обращаемся к каждому 128-му байту, таким образом, модифицируя каждую вторую строку кэша массива. Чтобы сохранить каждую вторую строку в кэше, необходим его объём в 8 Мбайт, но на моей машине есть только 4 Мбайт.

    Даже если бы кэш был полностью ассоциативным, это не позволило бы сохранить в нём 8 Мбайт данных. Заметьте, что в уже рассмотренном примере с шагом 512 и размером массива 8 Мбайт, нам необходим только 1 Мбайт кэша, чтобы сохранить все нужные данные, но это невозможно сделать из-за недостаточной ассоциативности кэша.

  4. Почему левая сторона треугольника постепенно набирает свою интенсивность? Максимум интенсивности приходится на значение шага в 64 байта, что равно размеру строки кэша. Как мы увидели в первом и во втором примере, последовательный доступ к одной и той же строке практически ничего не стоит. Скажем, при шаге в 16 байт, мы имеем четыре обращения к памяти по цене одного.

    Так как количество итераций равно в нашем тесте при любом значении шага, то более дешёвый шаг в результате даёт меньшее время работы.

Обнаруженные эффекты сохраняются и при больших значениях параметров:

Ассоциативность кэша - интересная штука, которая может проявить себя при определённых условиях. В отличие от остальных рассмотренных в этой статье проблем, она не является настолько серьёзной. Определённо, это не то, что требует постоянного внимания при написании программ.

Пример 6: ложное разделение кэша

На многоядерных машинах можно столкнуться с другой проблемой - согласование кэшей. Ядра процессора имеют частично или полностью раздельные кэши. На моей машине кэши L1 раздельны (как и обычно), так же имеются два кэша L2, общие для каждой пары ядер. Детали могут различаться, но в целом современные многоядерные процессоры имеют многоуровневые иерархические кэши. Причём самые быстрые, но и самые маленькие кэши, принадлежат индивидуальным ядрам.

Когда одно из ядер модифицирует значение в своём кэше, другие ядра больше не могут использовать старое значение. Значение в кэшах других ядер должно быть обновлено. Более того, должна быть обновлена полностью вся строка кэша , так как кэши оперируют данными на уровне строк.

Продемонстрируем эту проблему на следующем коде:

private static int s_counter = new int ;

private void UpdateCounter(int position)
{
for (int j = 0; j < 100000000; j++)
{
s_counter = s_counter + 3;
}
}


Если на своей четырёхядерной машине я вызову этот метод с параметрами 0, 1, 2, 3 одновременно из четырёх потоков, то время работы составит 4.3 секунды . Но если я вызову метод с параметрами 16, 32, 48, 64, то время работы составит только 0.28 секунды .

Почему? В первом случае, все четыре значения, обрабатываемые потоками в каждый момент времени, с большой вероятностью попадают в одну строку кэша. Каждый раз когда одно ядро увеличивает очередное значение, оно помечает ячейки кэша, содержащие это значение в других ядрах, как невалидные. После этой операции, все остальные ядра должны будут закэшировать строку заново. Это делает механизм кэширования неработоспособным, убивая производительность.

Пример 7: сложность железа

Даже теперь, когда принципы работы кэшей для вас не секрет, железо по-прежнему будет преподносить вам сюрпризы. Процессоры отличаются друг от друга методами оптимизации, эвристиками и прочими тонкостями реализации.

Кэш L1 некоторых процессоров может осуществлять параллельный доступ к двум ячейкам, если они относятся к разным группам, но если они относятся к одной, только последовательно. Насколько мне известно, некоторые даже могут осуществлять параллельный доступ к разным четвертинкам одной ячейки.

Процессоры могут удивить вас хитрыми оптимизациями. Например, код из предыдущего примера про ложное разделение кэша не работает на моём домашнем компьютере так, как задумывалось - в простейших случаях процессор может оптимизировать работу и уменьшить негативные эффекты. Если код немного модифицировать, всё встаёт на свои места.

Вот другой пример странных причуд железа:

private static int A, B, C, D, E, F, G;

private static void Weirdness()
{
for (int i = 0; i < 200000000; i++)
{
<какой-то код>
}
}


Если вместо <какой-то код> подставить три разных варианта, можно получить следующие результаты:

Инкрементирование полей A, B, C, D занимает больше времени, чем инкрементирование полей A, C, E, G. Что ещё страннее, инкрементирование полей A и C занимает больше времени, чем полей A, C и E, G. Не знаю точно каковы причины этого, но возможно они связаны с банками памяти (да-да, с обычными трёхлитровыми сберегательными банками памяти, а не то, что вы подумали ). Имеющих соображения на этот счёт, прошу высказываться в комментариях.

У меня на машине вышеописанного не наблюдается, тем не менее, иногда бывают аномально плохие результаты - скорее всего, планировщик задач вносит свои «коррективы».

Из этого примера можно вынести следующий урок: очень сложно полностью предсказать поведение железа. Да, можно предсказать многое, но необходимо постоянно подтверждать свои предсказания с помощью измерений и тестирования.

Заключение

Надеюсь, что всё рассмотренное помогло вам понять устройство кэшей процессоров. Теперь вы можете использовать полученные знания на практике для оптимизации своего кода.

При выполнении различных задач в процессор вашего компьютера поступают необходимые блоки информации из оперативной памяти. Обработав их ЦП записывает полученные результаты вычислений в память и получает на обработку последующие блоки данных. Так продолжается до тех пор, пока поставленная задача не будет выполнена.

Вышеупомянутые процессы производятся на очень большой скорости. Однако скорость даже самой быстрой оперативной памяти значительно меньше скорости любого слабого процессора. Каждое действие, будь то запись на неё информации или считывание с неё занимают много времени. Скорость работы оперативной памяти в десятки раз ниже скорости процессора.

Не смотря на такую разницу в скорости обработки информации, процессор ПК не простаивает без дела и не ожидает, когда ОЗУ выдаст и примет данные. Процессор всегда работает и всё благодаря присутствию в нем кэш памяти.

Кэш — особый вид оперативной памяти. Процессор использует память кэша для хранения тех копий информации из основной оперативной памяти компьютера, вероятность обращения к которым в ближайшее время очень велика.

По сути кэш-память выполняет роль быстродействующего буфера памяти хранящего информацию, которая может потребоваться процессору. Таким образом процессор получает необходимые данные в десятки раз быстрее, чем при считывании их из оперативной памяти.

Основным отличием кэш памяти от обычного буфера являются встроенные логические функции. В буфере хранятся случайные данные, которые как правило обрабатываются по схеме » получен первым, выдан первым» либо » получен первым, выдан последним». В кэш памяти содержатся данные, вероятность обращения к которым в ближайшее время очень велика. Поэтому благодаря «умному кэшу» процессор может работать с полной скоростью и не ожидать данные, извлекаемые из более медленной оперативной памяти.

Основные типы и уровни кэш-памяти L1 L2 L3

Кэш память выполнена в виде микросхем статической оперативной памяти (SRAM), которые устанавливаются на системной плате либо встроены в процессор. В сравнении с другими видами памяти, статическая память способна работать на очень больших скоростях.

Скорость кэша зависит от объема конкретной микросхемы, Чем больше объем микросхемы, тем труднее добиться высокой скорости для её работы. Учитывая данную особенность, при изготовлении кэш память процессора выполняют в виде нескольких небольших блоков, именуемых уровнями. Самой распространенной на сегодняшний день считается трехуровневая система кеша L1,L2, L3:

Кэш память первого уровня L1 — самая маленькая по объему (всего несколько десятков килобайт), но самая быстрая по скорости и наиболее важная. Она содержит данные наиболее часто используемые процессором и работает без задержек. Обычно количество микросхем памяти уровня L1 равно количеству ядер процессора, при этом каждое ядро получает доступ только к своей микросхеме L1.

Кэш память уровня L2 по скорости уступает памяти L1, но выигрывает в объеме, который измеряется уже в нескольких сотнях килобайт. Она предназначена для временного хранения важной информации, вероятность обращения к которой ниже, чем у информации хранящейся в кэше L1.

Третий уровень кэш памяти L3 — имеет самый большой объем из трех уровней (может достигать десятков мегабайт), но и обладает самой медленной скоростью, которая всё же значительно выше скорости оперативной памяти. Кэш память L3 служит общей для всех ядер процессора. Уровень памяти L3 предназначен для временного хранения тех важных данных, вероятность обращения к которым чуть ниже, чем у информации которая хранится в первых двух уровнях L1, L2. Она также обеспечивает взаимодействие ядер процессора между собой.

Некоторые модели процессоров выполнены с двумя уровнями кэш памяти, в которых L2 совмещает все функции L2 и L3.

Когда полезен большой объем кэша.

Значительный эффект от большого объема кэша вы ощутите при использовании программ архиваторов, в 3D играх, во время обработки и кодирования видео. В относительно «легких» программах и приложениях разница практически не заметна (офисные программы, плееры и т.п).

Насколько важен кэш L3 для процессоров AMD?

Действительно, имеет смысл оснащать многоядерные процессоры выделенной памятью, которая будет использоваться совместно всеми доступными ядрами. В данной роли быстрый кэш третьего уровня (L3) может существенно ускорить доступ к данным, которые запрашиваются чаще всего. Тогда ядрам, если существует такая возможность, не придётся обращаться к медленной основной памяти (ОЗУ, RAM).

По крайней мере, в теории. Недавно AMD анонсировала процессор Athlon II X4, представляющий собой модель Phenom II X4 без кэша L3, намекая на то, что он не такой и необходимый. Мы решили напрямую сравнить два процессора (с кэшем L3 и без), чтобы проверить, как кэш влияет на производительность.

Как работает кэш?

Перед тем, как мы углубимся в тесты, важно понять некоторые основы. Принцип работы кэша довольно прост. Кэш буферизует данные как можно ближе к вычислительным ядрам процессора, чтобы снизить запросы CPU в более отдалённую и медленную память. У современных настольных платформ иерархия кэша включает целых три уровня, которые предваряют доступ к оперативной памяти. Причём кэши второго и, в частности, третьего уровней служат не только для буферизации данных. Их цель заключается в предотвращении перегрузки шины процессора, когда ядрам необходимо обменяться информацией.

Попадания и промахи

Эффективность архитектуры кэшей измеряется процентом попаданий. Запросы данных, которые могут быть удовлетворены кэшем, считаются попаданиями. Если данный кэш не содержит нужные данные, то запрос передаётся дальше по конвейеру памяти, и засчитывается промах. Конечно, промахи приводят к большему времени, которое требуется для получения информации. В результате в вычислительном конвейере появляются "пузырьки" (простои) и задержки. Попадания, напротив, позволяют поддержать максимальную производительность.

Запись в кэш, эксклюзивность, когерентность

Политики замещения диктуют, как в кэше освобождается место под новые записи. Поскольку данные, записываемые в кэш, рано или поздно должны появиться в основной памяти, системы могут делать это одновременно с записью в кэш (write-through) или могут маркировать данные области как "грязные" (write-back), а выполнять запись в память тогда, когда она будет вытесняться из кэша.

Данные в нескольких уровнях кэша могут храниться эксклюзивно, то есть без избыточности. Тогда вы не найдёте одинаковых строчек данных в двух разных иерархиях кэша. Либо кэши могут работать инклюзивно, то есть нижние уровни кэша гарантированно содержат данные, присутствующие в верхних уровнях кэша (ближе к процессорному ядру). У AMD Phenom используются эксклюзивный кэш L3, а Intel следует стратегии инклюзивного кэша. Протоколы когерентности следят за целостностью и актуальностью данных между разными ядрами, уровнями кэшей и даже процессорами.

Объём кэша

Больший по объёму кэш может содержать больше данных, но при этом наблюдается тенденция увеличения задержек. Кроме того, большой по объёму кэш потребляет немалое количество транзисторов процессора, поэтому важно находить баланс между "бюджетом" транзисторов, размером кристалла, энергопотреблением и производительностью/задержками.

Ассоциативность

Записи в оперативной памяти могут привязываться к кэшу напрямую (direct-mapped), то есть для копии данных из оперативной памяти существует только одна позиция в кэше, либо они могут быть ассоциативны в n-степени (n-way associative), то есть существует n возможных расположений в кэше, где могут храниться эти данные. Более высокая степень ассоциативности (вплоть до полностью ассоциативных кэшей) обеспечивает наилучшую гибкость кэширования, поскольку существующие данные в кэше не нужно переписывать. Другими словами, высокая n-степень ассоциативности гарантирует более высокий процент попаданий, но при этом увеличивается задержка, поскольку требуется больше времени на проверку всех этих ассоциаций для попадания. Как правило, наибольшая степень ассоциации разумна для последнего уровня кэширования, поскольку там доступна максимальная ёмкость, а поиск данных за пределами этого кэша приведёт к обращению процессора к медленной оперативной памяти.

Приведём несколько примеров: у Core i5 и i7 используется 32 кбайт кэша L1 с 8-way ассоциативностью для данных и 32 кбайт кэша L1 с 4-way для инструкций. Понятно желание Intel, чтобы инструкции были доступны быстрее, а у кэша L1 для данных был максимальный процент попаданий. Кэш L2 у процессоров Intel обладает 8-way ассоциативностью, а кэш L3 у Intel ещё "умнее", поскольку в нём реализована 16-way ассоциативность для максимизации попаданий.

Однако AMD следует другой стратегии с процессорами Phenom II X4, где используется кэш L1 с 2-way ассоциативностью для снижения задержек. Чтобы компенсировать возможные промахи ёмкость кэша была увеличена в два раза: 64 кбайт для данных и 64 кбайт для инструкций. Кэш L2 имеет 8-way ассоциативность, как и у дизайна Intel, но кэш L3 у AMD работает с 48-way ассоциативностью. Но решение выбора той или иной архитектуры кэша нельзя оценивать без рассмотрения всей архитектуры CPU. Вполне естественно, что практическое значение имеют результаты тестов, и нашей целью как раз была практическая проверка всей этой сложной многоуровневой структуры кэширования.